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The spectra of relaxation times of polymer meshes in the presence of various types of structural and dynamic
heterogeneity have been considered. The influence of the orientation ordering of elements of macromolecules
between the mesh nodes on the intrachain spectrum has been investigated. Analysis of the interchain large-
scale processes in polymer meshes containing rodlike inclusions has been carried out. It has been shown that
the presence of structural and dynamic heterogeneity of the above types along with the previously considered
domain structure of cross-linked polymers leads to a fine structure of the relaxation spectra of polymer
meshes.

Introduction. Cross-linked polymers are, as a rule, inhomogeneous systems with different types of irregulari-
ties (of chemical or physical nature) that show up as various physical and mechanical relaxation properties of such
systems (mechanical and dielectric relaxation, NMR and dynamic scattering of light, IR spectra, etc.). The structural
and dynamic heterogeneity can influence both the intrachain small-scale relaxation processes corresponding to motions
inside chains between mesh nodes and the relatively large-scale interchain relaxation characteristics.

Many theoretical studies of the relaxation properties of regular and irregular polymer meshes were made on
the basis of dynamic models consisting of multisegment chains of "beads and springs" (Kargin–Slonimskii–Rauz model
of the chain) as well as with the use of a "coarse-grained" model in which each chain between nodes is modeled by
one spring and the friction factor of a mesh node corresponds to the total friction of the portions of the chains adjoin-
ing this node. Such a dynamic model was used in the literature [1–4] to describe large-scale, specifically meshy, in-
terchain relaxation processes. In [1–4], the contributions of intra- and interchain relaxation processes leading to a
dynamic heterogeneity of cross-linked polymers to the viscoelastic characteristics of two- and three-dimensional Gauss-
ian meshes were compared.

One possible cause of the appearance of a dynamic heterogeneity of elastomers could also be the presence of
domains differing in the cross-link density, molecular mass of chains between nodes, etc. In [5–7], it is shown that a
"domain"-type heterogeneity leads to a change from the "power" to the "fractional-exponential" time dependence of the
relaxation modulus. A cross-linked polymer is modeled [5–7] as an ensemble of noninteracting cross-linked domains of
various sizes. These domains represent regular cubic meshworks of finite size made up of joined multisegment Gauss-
ian chains and differ from one another in the number of meshes. To perform averaging over all domains, the expo-
nential distribution function of the number of polymer segments in a domain is used [8–11]. It has been shown that
the temporal behavior of the relaxation modulus of a cross-linked polymer with a "domain"-type inhomogeneity is de-
fined by the fractional-exponential dependence [5–7] in contrast to regular meshes of infinite extent for which the the-
ory predicts a power law of fall of the relaxation modulus. The manifestation of the fractional exponent in the
relaxation properties of polymer systems is discussed in [12–17]. A "domain"-type heterogeneity also leads to a rapid
decrease in the modulus in the range of low frequencies compared to this quantity for regular systems. This conclusion
can be generalized to domains with other exponential-type distribution functions in the number of segments, i.e., to a
fairly wide class of heterogeneous polymer meshes [7].
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Another cause of the dynamic heterogeneity observed in cross-linked polymers is the difference in relaxation
properties between longitudinal and transverse (relative to the principal direction of the chain) elements of chains. This
effect is especially appreciable in chains with a considerable torsional and flexural rigidity. Movements of the trans-
verse elements of mesh chains were considered in [15, 16] on the basis of a dynamic model of a chain of plane elas-
tically coupled rotators. In these works, Gotlib et al. have developed a theory of high-frequency, transverse,
torsion-oscillation relaxation processes for heterogeneous polymer systems at exponential distributions of chains in the
degree of polymerization, which can arise at both certain mechanisms of polarization and structural heterogeneity of
domain-type polymers. They have investigated the autocorrelation function of the ordering parameter of an individual
fragment of a chain averaged over all elements of this chain and over all chains of the system. The autocorrelation
function of the ordering parameter of a heterogeneous polydisperse mesh is described by the fractional-exponential
time dependences both in the range of small times t due to the intrachain torsional-vibrational motions and at large t
due to the chain-length distributions between nodes. Such a behavior distinguishes the transverse torsion-oscillation re-
laxation processes from the longitudinal ones considered in [5–7] with the use of a model of Gaussian subchains. In
the case of longitudinal relaxation processes in chains, fractional-exponential time dependences of the dipole relaxation
and other physical quantities manifest themselves only in the range of large t due to the polydispersion of the mesh,
and at small t power laws Dt−n (n > 0) take place due to the intrachain motions.

One possible cause of the appearance of a dynamic heterogeneity and a fine structure of the relaxation spectra
in polymer meshes could also be the orientation ordering of chain elements arising from the interactions of liquid-crys-
tal (LC) type elements of chains. Interactions of such a type are especially strong in nematic elastomers and influence
their equilibrium properties [18–22]. An orientation order of fragments of mesh chains can also appear due to the or-
dering of rodlike particles embedded into the mesh and capable of forming the LC state [23]. An investigation of the
fine structure of the relaxation spectrum of the mesh in the presence of an orientation order has been made by us re-
cently [24, 25]. We considered the local dynamics of the mesh at fixed boundaries where ordering occurs due to the
orientation of the chain elements in the intermolecular field with a fixed position of the boundaries of a nondeformed
mesh clamped between two rigid plates. The present paper also considers the influence of an extension of a mesh with
free boundaries along the order axis (director) on the form of the relaxation spectrum and discusses the effects caused
by the structural heterogeneity of the mesh (the length distribution of chains, the presence of domains with a different
value of the local order, etc.).

Fine Structure of the Relaxation Spectrum and Heterogeneity of the Local Dynamics of the Mesh in the
Presence of an Orientation Order. To describe the mesh structure of a cross-linked polymer, the "three-chain" model
proposed in [18] is used. The mobility of macromolecular links is described by means of the model of a free-linked
chain consisting of either rigid rodlike elements or quasi-elastic (Gaussian) subchains with a fixed rms length [26, 27].
The latter model assumes that when an orientation order is established in a system, the mean-square projections of the
chain elements on the axis of the Cartesian system of coordinates change; however, the sum of the squares of these
projections remains constant. The respective change in the elastic constants of the elements describes the change in the
reactions of the constraint forces (and the corresponding Lagrange factors [28, 29]) acting on the rigid fragments of
chains.

In the model under consideration, the relaxation times τξ are determined by the factors ζξ(Ψ) and Kξ [30]:

τξ (Ψ) = ζξ (Ψ) 1
2Kξ [1 − cos Ψ]

 . (1)

In relation (1), the index ξ = x, y, z numbers three directions of the Cartesian system of coordinates along which the
relaxation of the projections of the chain elements bξ is considered.

The "dynamic" factor ζξ(Ψ) is associated with the dissipative effects: friction of elements against the environ-
ment and the overcoming of the molecular LC-field barrier during rotation of the chain elements. Its influence on the
relaxation properties of non-cross-linked linear polymers was considered in [27, 28]. The calculation of ζξ(Ψ) for poly-
mer meshes is a special problem which was qualitatively discussed in [24, 25]. In the present work, the above relaxa-
tion time τξ(Ψ)/ζξ(Ψ) dependent on the contribution of Kξ to (1) has been calculated.
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The "statistical" factor Kξ describes the contribution of the effective elasticity of chains and is determined by
the rms fluctuations of projections of the elements of chains stretched in various directions relative to the director:

K0

Kξ

 = 3 
sbξ

2
t − sbξt

2

l
2

 ,   K0 = 3kT ⁄ l
2
 . (2)

The present paper is devoted to the investigation of the dependence of the statistical factor Kξ on the order
parameter S = [3 scos2 ϑt − 1]/2 and the degree of stretching of the chains between the mesh nodes. The degree of
stretching of chains in a mesh is characterized by the dimensionless parameter γ B h0

 ⁄ Nl, where Nl is the contour
length of chains between nodes and h0 is the distance between the ends of equally stretched chains in the "three-
chain" netlike model for a nondeformed mesh.

The presence of an orientational order leads to the appearance of two branches of the relaxation spectrum of
the polymer mesh corresponding to the relaxation times of projections of chain elements along (τN) and transverse to
(τM) the director.

For a mesh at fixed boundaries where ordering occurs due to the reorientation of the chain elements in the
intermolecular field at a fixed position of the boundaries of the nondeformed mesh clamped between two rigid plates,
the model of Gaussian subchains gives the following expressions for the statistical factor of relaxation times τN and
τM:

K0

KN
 = 1 − γ2

 + 2S ,   
K0
K
M

 = 1 − γ2
 − S . (3)

From relations (1) and (3) it is seen that with increasing degree of order the given relaxation times τN ⁄ ζN in-
crease due to the statistical factor and τM ⁄ ζM decrease. The relaxation times of the mesh turn out to be shorter than
for the non-cross-linked polymer (γ = 0). An increase in the degree of stretching of chains and in the cross-link den-
sity leads to a decrease in the values of τN ⁄ ζN and τM ⁄ ζM for both chains.

The rms fluctuations of projections of the chain elements entering into the right-hand side of (2) and influenc-
ing the relaxation times of the ordered mesh have also been calculated with the use of the model of free-linked chains
consisting of rigid rodlike elements. The calculation procedure is described in detail in [31]. For the model of Gauss-

Fig. 1. Reduced relaxation times τ~(Ψ) B τ(Ψ)[2K0
 ⁄ ζ(Ψ)] as a function of the

wave number Ψ for a mesh with fixed boundaries at various values of the de-
gree of order: 1) S = 0; 2) 0.28; 3) 0.7; A, model of a chain of rigid elements;
B, model of Gaussian subchains with a fixed rms length of an element; I) τM;
II) τN; γ = 0.5. Ψ ⁄ π, rad.

Fig. 2. Inverse reduced relaxation times τ~−1(Ψ)B ζ(Ψ)/[2τ(Ψ)K0] as a function
of the wave number Ψ for a mesh with free boundaries (1) and a mesh with
fixed boundaries (2). Model of Gaussian subchains with a fixed rms length of
an element: I) τM; II) τN; γ = 0.3; S = 0.5.
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ian subchains, the statistical factor of relaxation times is independent of the stretching direction of the chain to the
order axis and is described by relation (3) for each of the three chains in a net mesh. For the model of a chain con-
sisting of rigid elements, the rms fluctuations of projections of segments along the selected axis turn out to be differ-
ent for the chains stretched in different directions to this axis. In this case, for an ordered mesh consisting of chains
with rigid elements, a fine structure of the spectrum inside each of the two branches corresponding to the relaxation
times τN and τM arises.

For sparsely cross-linked meshes (γ < 0.1) throughout the domain of change in the degree of order the bounda-
ries of "continuous" spectrum lines for the model of the chain consisting of rigid elements are close to one another
and to the "discrete" lines for the model of Gaussian subchains. This result substantiates the possibility of describing
the dynamics of rigid rodlike fragments of Gaussian mesh chains by a simpler model of Gaussian subchains with a
fixed rms length of an element. For non-Gaussian meshes with strongly stretched chains (γ > 0.1), it is necessary to
take into account the spectrum line splitting due to the rigidity of the chain elements (Fig. 1).

Additional dynamic heterogeneity can also arise because of the structural inhomogeneity of the mesh in the
presence of the length distribution of macromolecules and the different degree of stretching of chains between nodes.
The latter can be caused not only by the structure heterogeneity, but also by the extension of the regular mesh with
free boundaries along the director. In this case, the chains stretched along the order axis extend and those stretched
perpendicular to this axis contract (provided the volume for elastomers is constant). Since the relaxation times of each
chain depend on the degree of its stretching, an additional splitting of the relaxation spectrum lines τN and τM of the
extended mesh arises because of the different stretching of the chains between the nodes (Fig. 2). The cross-linked
polymer extension along the order axis also leads to a decrease in τN and τM for the mesh with free boundaries as
compared to τN and τM for the crossed-linked polymer with fixed boundaries (Fig. 2).

Another cause of the appearance of a fine structure of the ordered mesh relaxation spectrum could be the
presence of domains with a different value of the local degree of order, each of which will be characterized by its
own set of relaxation times (1) and (3).

Model Theory of the Relaxation Spectrum of Cross-Linked Gel with Embedded Rodlike Molecules. To
describe the dynamic properties of cross-linked polymers and gels containing hard rod-like particles, we use the sim-
plified viscoelastic rough model of [4] (Fig. 3). In so doing, we restrict ourselves to the consideration of the case
where the characteristic scale of the model meshwork (mesh dimensions) has the same order as the mean distance be-
tween the centers of mass of rigid rods.

Rods are characterized by the length l and parameters determined by the value of translational and rotational
friction in an effectively viscous medium against whose background a compound motion of the mesh with embedded
rods occurs.

The elastic properties of macromolecules between the cross-linked polymer nodes are given by a Gaussian po-
tential with an elastic constant KN. From the point of view of the rough viscoelastic dynamic model the friction is as-
sumed to be concentrated in the mesh nodes and is characterized by the friction factor ζN (Fig. 3).

The rigid rod dynamics is modeled by means of a "rigid, on average," quasi-elastic element (dumb-bell), for
which the Lagrange factor in the motion equations is replaced by the mean values (mean constraint) so that the rms
element length equal to l remains. As for the model of the chain from "rigid, on average," elements, the mean value
of the Lagrange factor determines the elastic constant K of the quasi-elastic element.

The rigid rod friction on the environment is assumed to be concentrated on the elastic dumb-bell ends and is
given by the friction factor ζ of the viscous drag center on each end of the dumb-bell. We also introduce internal fric-
tion ζ1 of the dumb-bell, which is determined from the condition of equality of the ratio between the translational and
rotational diffusion coefficients of the rigid dumb-bell and of the viscoelastic dumb-bell with a fixed, on average,
length [28]. In our case, ζ1 = ζ/4 [28].

The gel–rod interaction is described by the effective elastic potential that fixes the rods to the gel, prevents
translational and orientational mobility of the rod, and is characterized by the constant K1 (Fig. 3).

For the model of the three-dimensional mesh with embedded rods under consideration, the rms length of the
elastic element modeling the rod can be calculated as a function of K, K1, and KN. From the condition of equality of
the rms length to a given length of the rigid rod the value of the effective constant (mean constraint) K is calculated
as a function of K1, KN, and l. The relationship between K1, KN, and l is defined by the equation
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K + 


2

K1

 + 
1

3KN + 2KK1
 ⁄ (K1 + 2K)





−1

 = 
3kT

l
2  . (4)

For illustration, Fig. 4 shows the dependences of K on K1 for various KN. At fairly large K1 and KN the
value of K can become negative, which, from the point of view of the model, corresponds to the negative constraint
reaction to the rod contraction.

The equations of motion for the rigid rod ends permit relating their displacements and velocities to the dis-
placements and velocities of the nodes bordering with the rod. Therefore, the dynamical problem is reduced to the so-
lution of the system of equations of motion for the mesh nodes. This system (when projected onto the x-axis) can be
given in the form

ζN x
.
α,β,γ + KN [6xα,β,γ − xα+1,β,γ − xα−1,β,γ − xα,β+1,γ − xα,β−1,γ − xα,β,γ+1 − xα,β,γ−1] +

+ K1 [6 (a − b) xα,β,γ − a (xα+1,β,γ + xα−1,β,γ + xα,β+1,γ + xα,β−1,γ + xα,β,γ+1 + xα,β,γ−1)] = 0 , (5)

where indices α, β, and γ denote the mesh node numbers in three mutually perpendicular directions and the coeffi-
cients a and b are given in terms of elastic and viscous characteristics of the mesh elements:

a = 
K1 (K − λζ1)

(K1 − λζ) (K1 + 2K − λ (ζ + 2ζ1))
 ;   b = 

λζ  (K1 + 2K − λ (ζ + 2ζ1))
(K1 − λζ)  (K1 + 2K − λ (ζ + 2ζ1))

 . (6)

Here λ = 1/τ denotes the inverse relaxation times for the mesh with embedded hard particles. The solution of Eq. (5)
is represented, as usual, in the form [1]

xα,β,γ (t) =   ∑ 

θ1,θ2,θ3

  q (θ1, θ2, θ3) exp [i (θ1α + θ2β + θ3γ) − λt] , (7)

where λ denotes the eigenvalues of system (5) (cf. [1, 2, 4]).
The system of equations obtained for xα,β,γ(t) leads to a cubic equation for the eigenvalues λ = 1/τ(θ1, θ2, θ3),

where τ(θ1, θ2, θ3) are relaxation times depending on the node displacements. For each set of θ1, θ2, θ3, three λ values
are obtained, which reflects the presence of three branches of the collective relaxation spectrum (τ1, τ2, and τ3 in Fig.
5). Besides this solution, there appear two doubly degenerate solutions corresponding to the motion of rods at fixed
angles of the mesh (τ4 and τ5 in Fig. 5). To each branch there corresponds translational and orientational motion of
rods in the net meshes. Thus, the number of relaxation spectrum branches arising in the system under consideration

Fig. 3. Cell of the three-dimensional regular cubic model of a mesh with em-
bedded rods.

Fig. 4. Reduced elastic constant K
~

 B K/[3kT/l2] as a function of K
~

 B K1/[3kT/l2]
at KN = 0 (1); KN/[3kT/l2] = 1 (2); 2 (3); and 100 (4).
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totals seven: three of them correspond to collective modes of motions and four — to independent motions of rods.
The low-frequency collective branch (for an infinite mesh) stretches from the minimum relaxation time, which in the
general case is a composite function of K, K1, KN, ζ, and ζN, to infinitely large times when θ → 0 (for infinitely ex-
tended meshes) asymptotically dependent on the parameter characterizing the phase shift in the three-dimensional lat-
tice θ2 = θ1

2 + θ2
2 + θ3

2:

1

τ (θ)
 F 

KN + K1K ⁄ (K1 + 2K)
6ζ + ζN

 θ2
   at θ → 0 . (8)

To this branch there corresponds the displacement of the nodes, with their adjacent ends of six rods, from the nodes
of the neighboring meshes.

The times of the other two collective branches corresponding to the translational and rotational motions of
rods correlated with the motion of nodes always vary within finite limits whose values depend on the values of K,
K1, KN, ζ, and ζN. In the case where K1 → 0 in the absence of the gel–rigid-rod interaction, only low-frequency col-
lective motions of the mesh and one independent rotational relaxation time of the rod 1/τ = (K1 + 1K)/(ζ + 2ζ1) remain.
As an example, Fig. 5 compares the results of the calculations of the inverse relaxation times τ0

 ⁄ τ as a function of
parameters η B (cos θ1 + cos θ2 + cos θ3)/3 for the cases where K1 = 0 and K1 = KN at equal given values of l and
ζ ⁄ ζN.

In developing the theory further, it also is necessary to take into account (especially for the case of small rods
of size of the order of the statistical chain segment) the participation of the rod in small-scale intrachain motions. An-
other refinement of the theory should be associated with the account for the fixed volume of the elastomer and the
presence of additional stretching of chains between nodes, which inevitably speaks about the value of K.

CONCLUSIONS

The obtained expressions for the relaxation times of oriented cross-linked polymers as well as for meshes and
gels with embedded rigid rods will make it possible to calculate such relaxation characteristics of these systems as dy-
namic modulus and viscosity, dynamic correlation functions that appear as a dielectric relaxation, NMR, dynamic scat-
tering of light, etc.

This work was supported by the Russian Basic Research Foundation (projects 02-03-33132, 02-03-06376),
INTAS (grants 99-1114, 00-445, 00-712), and the ESF "SUPERNET" program.

NOTATION

t, current time; τ, relaxation time; ζξ, dynamic factor of relaxation times; Kξ, statistical factor of relaxation
times; Ψ, wave number (phase shift between motions of neighboring elements); bξ, vector b component connecting

Fig. 5. Inverse relaxation times τ as a function of η for a cross-linked gel with
embedded rodlike particles: a) K1 = 0, KN = 3kT/l2 [1) τ1; 2) τ2 = τ3 = τ4];
b) K1 = KN = 3kT/l2 [1) τ1; 2) τ2; 3) τ3; 4) τ4; 5) τ5].
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chain-segment ends; K0, elastic constant of the Gaussian chain element in the absence of orientational order; k,
Boltzmann constant; T, absolute temperature; l, rms length of the Gaussian chain element; S, order parameter; θ, angle
between the chain-segment direction and the director; N, number of segments in the chain; τN and τM, relaxation times
of chain-element projections along the director and transverse to it, respectively; KN and KM, statistical factors of re-
laxation times τN and τM, respectively; KN, elastic constant of mesh chain elements; ζN, friction factor of the mesh
node; K, elastic constant of the quasi-elastic element imitating a hard rodlike particle embedded in the mesh; ζ, friction
factor of the viscous drag center at the end of the dumb-bell imitating a hard rodlike particle embedded in the mesh;
ζ1, internal friction factor of the viscous drag centers at the ends of the dumb-bell imitating a hard rodlike particle em-
bedded in the mesh; K1, elastic constant of the "effective" potential fixing rods to the mesh; K, K1, reduced elastic
constants; x, coordinate of the mesh node on the 0x axis; x

.
, time derivative; q, normal coordinate; θ1, θ2, and θ3,

phase shifts between displacements of adjacent mesh nodes along the 0x, 0y, and 0z axes, respectively; θ, wave vector
modulus (θ2 = θ1

2 + θ2
2 + θ3

2); τ0 = ζl2/6kT, rotational diffusion time of an isolated quasi-elastic dumb-bell modeling a
rigid rod. Subscript: N, mesh.
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